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Abstract 

Discourse-based aphasia therapies often rely on narrative stimuli, yet the structural characteristics of these 
materials remain largely unexamined. While stimulus complexity may influence language production and 
cognitive load, few studies have proposed quantifiable methods for profiling discourse-level structure. 
This study aimed to develop and apply a replicable structural profiling method for narrative stimuli used 
in story-retelling therapy. A secondary aim explored the applicability of the profiling framework to 
narrative output in a single-case exploratory analysis. Twelve stimuli were analyzed using a Python-based 
pipeline to extract sentence count, average sentence length, complex sentence ratio, and estimated 
information units. Composite scores were calculated using z-score normalization and used to classify 
stimuli into Low, Medium, and High complexity groups. IU (Information Unit) gains were measured 
from pre- and post-treatment retellings of nine treated stimuli and three untrained evaluation stimuli. 
Stimuli varied in structural complexity. Some high-complexity stimuli yielded substantial IU gains when 
supported with treatment, though this pattern was not consistent. In contrast, similarly complex stimuli 
used only for evaluation (e.g., Loan) showed reduced or negative gains. Exploratory correlations showed 
a weak positive trend between complexity and IU gain for treated stimuli (r = +0.13), but this should be 
interpreted cautiously given the limited sample. This study introduces a quantifiable method for structural 
profiling of narrative stimuli and demonstrates its feasibility in treatment design. Structural complexity 
may function as a modifiable input variable for stimulus calibration in discourse-based aphasia therapy, 
with potential applications for tailoring task demands to individual readiness. 

 

Keywords: aphasia, story retelling, narrative discourse, structural complexity, discourse profiling 
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Introduction 

In conversational contexts, the ability to listen, comprehend, and rephrase a partner’s message 

plays a central role in functional communication (Clark & Brennan, 1991; Glosser & Deser, 1992; Kagan 

& Simmons-Mackie, 2007). This process involves more than passive reception of information; it engages 

integrated cognitive-linguistic operations including listening, comprehension, reconstruction, and verbal 

output (Ulatowska, North, & Macaluso-Haynes, 1983). At the heart of this ability is story retelling, which 

supports essential discourse functions such as appropriate response, topic maintenance, and contextual 

alignment (Marini et al., 2005). 

Unlike spontaneous narrative production, story retelling places heavy demands on verbal working 

memory, as it requires the temporary storage and reorganization of aurally presented linguistic input. Yoo 

and McNeil (2019) demonstrated that in individuals with aphasia, performance on story retelling tasks is 

significantly correlated with measures of verbal working memory (r = .50–.75). When story retelling 

abilities are impaired due to aphasia, individuals often struggle to follow conversational turns and 

maintain contextual coherence, which can negatively impact not only the efficiency of daily interaction 

but also broader aspects of social participation and relationship-building. 

Story retelling is more than a sequence of sentence repetitions. It requires the integration of 

narrative structure, temporal sequencing, and causal coherence, placing complex demands on both 

linguistic and cognitive processing resources (Stein & Glenn, 1979; Trabasso & van den Broek, 1985). 

This task is often conceptualized as narrative retelling in the discourse literature, where it is regarded as a 

discourse-level function commonly used in both assessment and treatment contexts (Liles, 1993).  

A range of studies has identified five categories of factors influencing story retelling 

performance. First, cognitive factors such as working memory capacity and processing speed have been 

shown to significantly influence discourse-level comprehension and organization. For example, See and 

Ryan (1995) demonstrated that individual differences in these cognitive capacities mediate age-related 

variations in discourse processing performance. From a theoretical perspective, discourse comprehension 

models (e.g., van Dijk & Kintsch, 1983; Kintsch, 1988) highlight the central role of working memory in 
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supporting macrostructural integration, coherence building, and the real-time coordination of incoming 

and stored information across discourse segments.  

Second, linguistic factors contribute to discourse production through several interrelated 

mechanisms. According to Levelt (1989), lexical retrieval involves a multi-stage process that includes 

conceptual preparation, lemma selection, and phonological encoding. When any part of this process is 

disrupted, speakers may experience breakdowns in fluency and lexical cohesion, which can negatively 

impact the continuity of narrative expression. Syntactic comprehension also plays an essential role, 

particularly when processing structurally complex sentences such as those with embedded clauses or 

noncanonical word orders. Gibson’s (1998) Syntactic Prediction Locality Theory explains that increased 

syntactic complexity elevates both integration and memory costs, which can interfere with the real-time 

construction and maintenance of coherent discourse. Building on this account, expectation-based models 

of sentence processing suggest that the difficulty of comprehension is influenced by how well upcoming 

structures align with probabilistic syntactic expectations (Levy, 2008). The use of cohesive devices is 

equally important for sustaining both local and global coherence across utterances. Proper use of 

linguistic markers such as pronouns, conjunctions, and lexical ties helps maintain the semantic flow of 

discourse. In a study comparing children with and without language disorders, Liles (1993) reported that 

limited or inappropriate use of cohesive devices was associated with poorer narrative organization and 

reduced listener comprehension. Collectively, findings on lexical retrieval, syntactic comprehension, and 

cohesion highlight the critical role of linguistic processing in discourse production and demonstrate that 

deficits in any of these domains may compromise performance at the discourse level.  

Third, discourse-level factors also play a critical role in narrative performance, particularly 

through schematic knowledge and causal event representation. Mandler and Johnson (1977) first 

demonstrated that narrative comprehension and recall are guided by underlying story grammar structures. 

Building on this foundation, Stein and Glenn (1979) proposed that a well-formed narrative is organized 

around an internalized story schema, typically consisting of elements such as setting, initiating event, 

goal, attempt, and outcome. This mental framework guides both comprehension and production by 
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helping individuals structure events in a temporally and causally coherent sequence. Marini et al. (2005) 

found that individuals with language impairments often struggle to construct causal relationships between 

events, resulting in fragmented or poorly integrated narratives. These findings highlight the importance of 

macrostructural organization in discourse-level processing. 

Fourth, stimulus-level characteristics have also been shown to influence language performance, 

particularly through structural complexity and modality of presentation. Thompson and Shapiro (2005), in 

their work on Treatment of Underlying Forms (TUF), demonstrated that training on syntactically complex 

sentences led to generalization to simpler, untrained structures. Although this work was conducted at the 

sentence level, it underscores a key principle: structurally complex input imposes greater cognitive load 

but can also foster broader learning and generalization. When complex sentences are used as treatment 

stimuli, they place a greater cognitive burden on the language processing system. Research within the 

Treatment of Underlying Forms (TUF) framework has shown that training on complex sentence 

structures leads to generalization to untrained, linguistically related simpler structures (Thompson & 

Shapiro, 2005). In other words, such stimuli not only improve performance on the trained complex forms 

but also facilitate better performance on simpler, untrained tasks, likely by strengthening integrative 

processing mechanisms. While not focused on discourse per se, these findings provide conceptual 

justification for considering stimulus complexity as an active design element in discourse-based aphasia 

therapy. 

However, despite the growing recognition of stimulus-level effects, structural complexity has 

rarely been examined in discourse-based intervention. While structural complexity at the sentence level 

has been well studied, particularly through treatment approaches such as Treatment of Underlying Forms 

(TUF), which shows that training on complex syntax can promote generalization (Thompson & Shapiro, 

2005), this principle has seldom been extended to the discourse level. Discourse-based therapies continue 

to rely heavily on narrative stimuli, and while clinicians may informally consider aspects of narrative 

structure such as temporal ordering and causal relationships, stimuli are typically selected based on topic 

familiarity, cultural relevance, or perceived appropriateness for the client (Dipper et al., 2020). Structural 
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characteristics of the stimuli, including syntactic complexity or information density, are rarely quantified 

or systematically manipulated as experimental variables. This lack of quantification and calibration of 

discourse-level structure represents a methodological gap that limits both empirical validation and 

stimulus design in current aphasia therapy. 

This framework builds on prior findings but shifts the analytic focus from output to input. To 

address this gap, the present study introduces a quantifiable method for structural profiling of narrative 

stimuli used in aphasia intervention. Using four linguistic indicators, sentence count, average sentence 

length, subordination ratio, and estimated information units, we applied a Python-based pipeline to 

analyze twelve story stimuli (Python Software Foundation, 2023). Composite complexity scores were 

calculated using z-score normalization and used to classify stimuli into low, medium, and high 

complexity tiers. 

As a proof-of-concept application, we explored how this profiling framework might be used to 

characterize stimuli and inform stimulus selection for treatment planning. By shifting analytic focus from 

narrative output to stimulus input, this study offers a preliminary demonstration of data-informed stimulus 

profiling for potential use in discourse therapy. 

 

Method 

Design 

This study employed a single-case pre-post design to (1) quantify the structural complexity of narrative 

stimuli and (2) examine the relationship between structural complexity and treatment responsiveness in 

story retelling therapy (SRT). The study consisted of two components: a structural analysis of 12 narrative 

stimuli and an intervention phase. Structural features including sentence count, average sentence length, 

subordination ratio, and estimated information units were extracted using a Python-based pipeline. Z-

score normalization was applied, and composite structural complexity scores were calculated and used to 

group stimuli into Low, Medium, and High Load Blocks based on tertile distribution. 

Participant 
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A single participant took part in this study: a right-handed, monolingual English-speaking woman, aged 

70 at the time of participation. She experienced a left hemisphere stroke approximately 34 months prior 

and was diagnosed with aphasia by a neurologist in 2022. Her educational background included 17 years 

of formal schooling, and she had previously worked in a professional administrative role at a university 

before retirement. Based on Western Aphasia Battery-Revised (WAB-R) scores, she presented with mild 

anomic aphasia (AQ = 92.7). She did not exhibit signs of moderate or severe apraxia of speech. 

Eligibility was determined according to the following inclusion criteria: (1) diagnosis of mild to moderate 

aphasia; (2) stroke onset of more than six months prior; (3) age 18 or older; (4) right-handed premorbidly; 

(5) English as the primary language; (6) normal or corrected-to-normal vision; and (7) a minimum of 12 

years of education. Exclusion criteria included global or severe aphasia, left-handedness prior to stroke, 

multiple or recurrent stroke events, current enrollment in similar therapy studies, and any co-occurring 

neurological conditions unrelated to stroke. All procedures were approved by the Institutional Review 

Board (IRB) at Baylor University, and informed consent was obtained prior to participation. 

Procedure 

The participant completed nine face-to-face story retelling treatment (SRT) sessions over a three-week 

period. Each session was conducted by the Principal Investigator (PI) and lasted approximately one hour. 

A total of 12 narrative stimuli were used: nine were assigned as treatment stimuli, and three were used 

exclusively as evaluation-only stimuli. Each treatment session consisted of an auditory presentation of a 

story stimulus, a pre-treatment retelling, a multimodal therapy phase (including repetition, reading, 

writing, sequencing, summarization, and guided retelling), and a post-treatment retelling. All retellings 

were based solely on auditory input; no visual cues were provided. Three formal assessments were 

conducted: a pre-test (Test 1), a post-test immediately after the final treatment session (Test 2), and a 

delayed post-test seven weeks later (Test 3). The delay between Test 2 and Test 3 was extended from four 

to seven weeks due to a fall experienced by the participant. Evaluation-only stimuli were administered at 

all three assessment timepoints to examine generalization and maintenance. Performance was measured 

using Information Units (IUs) produced in retellings. 
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Structural Feature Extraction  

To quantify stimulus-level complexity, four structural features were analyzed for each of the twelve story 

stimuli. These structural features were selected not only for their theoretical relevance to syntactic and 

propositional complexity, but also for their practical utility in automated discourse analysis. Selection was 

guided by four key criteria: 

(1) conceptual grounding in prior research on syntactic load and information density, 

(2) extractability using standard Python-based string processing methods (e.g., str.split(), str.count(), 

re.search()), 

(3) objectivity and consistency through rule-based implementation, and 

(4) applicability across all 12 stimuli to support reliable comparison. 

This approach supported that the resulting composite score would be both theoretically interpretable and 

computationally reproducible. 

Stimulus Analysis 
All computations were conducted in Python 3.10 (Python Software Foundation, 2023) using standard 

libraries including pandas (McKinney, 2010), numpy (Harris et al., 2020), and re (Python Software 

Foundation, 2023) for data processing, and matplotlib (Hunter, 2007) for visualization. Linguistic features 

were extracted using basic string handling methods in Python 3.10, including str.split() for word 

segmentation, len() for word count calculation, and str.count() for detecting conjunctions and 

punctuation-based information units. All subsequent calculations, normalization, and block assignment 

were performed using pandas, numpy, and re. 

1. Sentence Count 

Total number of syntactically complete sentences per stimulus, determined through manual segmentation 

based on independent clause boundaries rather than punctuation alone. Initial segmentation was estimated 

using regular expression-based punctuation splits, but final sentence counts were manually corrected to 

reflect functional sentence boundaries and clause completeness. 
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2. Complex Sentence Ratio 

The proportion of sentences containing at least one subordinating conjunction (e.g., because, although, 

when, if, since, though, unless, while). Each sentence was flagged as complex if it included any of these 

conjunctions, detected using regular expression searches. 

 

Complex Sentence Ratio=Total Sentence CountNumber of sentences with subordinating conjunctions
/Total Sentence Count 

 
3. Average Sentence Length 

The mean number of words per sentence was calculated by dividing the total word count by the manually 

verified sentence count. Word counts were extracted using Python's string splitting and length functions. 

 

Average Sentence Length= Total Word Count/Sentence Count  

 

4. Estimated Information Units (IUs) 

A proxy for informational density, estimated as the sum of all commas, occurrences of 'and', and 

occurrences of 'but' in each stimulus. These elements were treated as proxies for clause-level 

segmentation and cohesion markers. 

Estimated IUs = count of commas + count of "and" + count of "but" 

 

Raw values for each feature were z-score normalized to allow for cross-feature comparison. A composite 

structural load score was calculated for each stimulus by averaging the four z-scores. Based on tertile 

distribution of composite scores, stimuli were categorized into Low, Medium, or High Load Blocks to 

facilitate load-based comparisons of treatment response. 

5. Normalization and Composite Score  

Each raw feature was converted to a z-score where x is the raw score for a given stimulus, μ is the mean, 

and σ is the standard deviation across all stimuli:  
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z= x−μ/σ 

A Composite Structural Load Score was then computed for each stimulus as the mean of its four z scores 

of normalized features: sentence count, complex ratio, sentence length, and estimated IUs. 

 

Composite Score=zSentence Count+zComplex Ratio+zSentence Length+zIUs/4 
 

6. Block Assignment (Load Level) 

Stimuli were categorized into Low, Medium, or High Load Blocks based on their Composite Structural 

Load Scores, using tertile distribution. Specifically, the top third of scores were classified as High Load, 

the middle third as Medium Load, and the bottom third as Low Load. This classification was 

implemented using the qcut() function from the Python pandas library. 

Exploratory Application: IU Response Profiling  

To examine the relationship between structural complexity and treatment response, 

four structural features—sentence count, complex sentence ratio, average sentence length, and estimated 

information units—were quantified for each narrative stimulus and standardized using z-scores. 

The mean of these z-scores was used to calculate a composite structural complexity score for each story. 

IU (Information Unit) gain was computed as the difference in the number of IUs produced before and 

after treatment. A total of 12 narrative stimuli (n = 12) were included in the analysis: nine were used as 

active treatment stimuli, and three were used solely for evaluation to assess generalization and retention 

effects. The nine treated stories were presented within therapy sessions and evaluated at both pre- and 

post-treatment to assess direct treatment effects. 

The three evaluation-only stories were not used in therapy but were retold at three time points: pre-

treatment, immediately after completing all treatment sessions (Post1), and seven weeks post-treatment 

(Post2). These stimuli were used to assess the generalization and maintenance of treatment gains. 

IU gains were calculated for each comparison interval (Post1–Pre, Post2–Pre, and Post2–Post1), and the 
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same structural profiling procedure was applied to these evaluation stories as for the treated ones. The 

relationship between stimulus complexity and IU gain was examined using Pearson correlation analysis 

and visualized using scatterplots with regression lines. This allowed comparison of structural 

responsiveness between treated and untreated stimuli. Given the limited sample size, the analysis was 

exploratory in nature and aimed to identify directional trends rather than statistical significance. 

The correlation analysis was conducted using the scipy.stats.pearsonr() function in Python. 

 

Results 

Treatment and IU Measurement 

Of the twelve narrative stimuli developed for this study, nine were implemented in structured story-

retelling treatment sessions with a single participant diagnosed with mild anomic aphasia. The remaining 

three stimuli were designated as evaluation-only and were not used during treatment. During treatment 

sessions, each stimulus was presented auditorily, followed by a pre-treatment retelling. A multimodal 

therapy protocol was then conducted, consisting of repetition of words and phrases, reading, writing, 

picture-sequence ordering, sentence ordering, true/false decision-making, story summarization 

(beginning–middle–end), and retelling at progressively larger units. At the end of each session, a post-

treatment retelling was elicited. All retellings were based solely on auditory input without visual aids. 

Retellings were transcribed and analyzed for Information Units (IUs), with IU gain calculated as the 

difference between post- and pre-treatment scores. 

Stimulus Analysis: Structural Complexity of 12 Stories 
Each of the twelve stimuli was analyzed for four structural indicators: (1) manually verified sentence 

count, (2) average sentence length, (3) proportion of complex sentences (based on the presence of 

subordinating conjunctions), and (4) estimated information units (approximated by counts of commas, 

'and', and 'but'). Each measure was z-score normalized and averaged to compute a composite structural 

complexity score. Stimuli were divided into Low, Medium, and High Load Blocks based on tertile 

distribution of these composite scores (see Table 1, Figure 1). 
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Table 1. Structural Analysis of Narrative Stimuli 
Story Sentence 

Count 
Word 
Count 

Avg 
Sentence 
Length 

Subordination 
Ratio 

Estimated 
IUs 

Composite 
Score 

Load 
Block 

Airport 14 220 15.71 0.50 21 0.698 High 
Gas* 14 217 15.50 0.43 21 0.550 High 
Tickets 13 212 16.31 0.85 13 0.513 High 
Fire 13 223 17.15 0.54 16 0.474 High 
Water 14 220 15.71 0.36 16 0.131 Medium 
Paint 14 224 16.00 0.29 16 0.091 Medium 
Garage Sale 14 214 15.29 0.43 13 -0.077 Medium 
Library* 13 202 15.54 0.62 10 -0.199 Medium 
Loan* 16 200 12.50 0.25 16 -0.261 Low 
Sandwich 14 202 14.43 0.50 11 -0.304 Low 
Tightrope 14 217 15.50 0.14 12 -0.511 Low 
Baseball 11 152 13.82 0.45 12 -1.106 Low 

Table 1. Structural features of the twelve narrative stimuli. Sentence count values were manually verified. 
Composite scores were calculated as the mean of z-scored structural variables (sentence count, average sentence 
length, subordination ratio, and estimated IUs). Load Block assignments were based on tertile split of composite 
scores. 

Figure 1. Composite Structural Complexity Scores of 12 Stories 

  
Figure 1. Composite Structural Complexity Scores of 12 Stories. Evaluation stimuli are marked with an asterisk (*) 
and highlighted in a different color. 
 
 
The stimuli were evenly distributed across complexity tiers, permitting exploratory comparisons of 

structural complexity and treatment responsiveness. 
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Exploratory Aim: Relationship Between Structural Complexity and IU Gain 

Treatment Stimuli (n = 9) 

For the nine treatment stimuli, IU gain was calculated as the difference between post-treatment and pre-

treatment retellings. In this case, high-load stories such as Airport (Composite = +0.70, Gain = +25), 

Tickets (+0.51, +30), and Fire (+0.47, +41) were associated with relatively higher IU gains. In contrast, 

low-load stimuli such as Tightrope (–0.51, +13) and Sandwich (–0.30, +11) showed smaller or 

inconsistent gains. Table 2 presents the composite complexity scores and corresponding IU gains for all 

stimuli, while Figures 2 and 3 visualize the relationship between complexity and treatment response. The 

average IU gain for High Block treatment stimuli was +31.5, compared to +28.7 for Low Block stories. A 

weak-to-moderate positive correlation was observed between composite structural complexity and IU 

gain (r = +0.54), though this exploratory result should be interpreted with caution given the small sample 

size and the context-specific nature of the data. 

 

Table 2. Composite Scores and IU Gain for All 12 Narrative Stimuli 

Story Composite Score IU Gain Load Block 
Airport 0.698 25 High 
Gas* 0.55 4 High 

Tickets 0.513 30 High 
Fire 0.474 41 High 

Water 0.131 79 Medium 
Paint 0.091 27 Medium 

Garage Sale -0.077 31 Medium 
Library* -0.199 38 Medium 
Loan* -0.261 -17 Low 

Sandwich -0.304 46 Low 
Tightrope -0.511 13 Low 
Baseball -1.106 31 Low 

Table 2. Composite Scores and IU Gain for All 12 Narrative Stimuli. IU Gain for treatment stimuli reflects the 
difference between post-treatment and pre-treatment retellings. For evaluation-only stimuli (marked with *), IU 
Gain reflects the difference between Post2 and Pre sessions. Load Blocks were assigned based on tertile distribution 
of composite scores. 
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Figure 2. Relationship between composite structural complexity scores and IU gain 

  
Figure 2. Relationship between composite structural complexity scores and IU gain. Each point represents a 
stimulus. Treatment stimuli are shown as orange circles and evaluation-only stimuli (marked with *) are shown as 
red stars. IU gain for evaluation stimuli is calculated as Post2 – Pre. 
 

Figure 3. IU gain by narrative stimulus, grouped by structural complexity (Load Block) 

 
Figure 3. IU gain by narrative stimulus, grouped by structural complexity (Load Block). Colors represent Load 
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Block classification: Low (pink), Medium (yellow), and High (blue). Evaluation-only stimuli are marked with an 
asterisk (*); IU gain was calculated as the difference between post- and pre-treatment (or Post2 – Pre for evaluation-
only stimuli) 
 
 
Evaluation-Only Stimuli (n = 3) 

Among the three evaluation-only stimuli, IU gain was calculated as the difference between Post2 and Pre 

sessions. Although all three stimuli were classified within the Low Load Block, they showed divergent 

patterns: Loan (Composite = –0.26) yielded a decrease in IU score (–17), while Library (Composite = –

0.20) showed the highest gain across all stimuli (+38). A correlation analysis suggested a strong negative 

association between structural complexity and IU gain (r = –0.99); however, this result should be interpreted 

with caution given the very small sample size (n = 3) and the substantial variability across individual items. 

In addition to overall IU gains, temporal trajectories for the evaluation-only stimuli were examined across 

three timepoints: Pre, Post1, and Post2 (Figure 4). Library showed a steady increase from 19 to 44 to 57 

IUs, indicating sustained growth even without direct treatment. Gas remained relatively stable across 

timepoints (32 → 37 → 36), while Loan exhibited a sharp decline from 40 to 21 and finally to 23, indicating 

possible decline or limited generalization effects. These results highlight the variability in maintenance and 

generalization patterns among untreated stimuli. 
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Figure 4. IU count for evaluation-only stimuli across Pre, Post1, and Post2 

  
Figure 4. IU count for evaluation-only stimuli across Pre, Post1, and Post2 timepoints using actual data. 
Library* shows continuous improvement, Gas* remains stable, and Loan* demonstrates a sharp decline after 
treatment. 
 

Discussion 

This study quantitatively analyzed the structural complexity of narrative stimuli used in aphasia therapy 

and explored how this complexity related to discourse-level treatment responsiveness. While previous 

studies have focused on features of patient-produced discourse (Brookshire & Nicholas, 1994; Glosser & 

Deser, 1992), this study uniquely investigated the structural properties of the stimulus materials 

themselves and examined how those properties interacted with treatment outcomes. Several key findings 

emerged. 

First, the correlation between composite structural complexity scores and IU gain across all 

twelve stories was minimal (r = 0.05), indicating no consistent linear relationship. However, when the 

analysis was restricted to treated stimuli only (n = 9), a moderate positive trend was observed (r = +0.54), 

indicating that structural complexity may interact with treatment responsiveness under certain conditions. 

Rather than dismissing the role of complexity, this pattern suggests that structural complexity may 

function as a moderator, with its influence likely interacting with other factors, such as auditory 
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comprehension, topic familiarity, task repetition, or individual cognitive profiles (Caplan & Waters, 1999; 

Daneman & Carpenter, 1980). As shown in Table 2, the lack of consistent patterns across stimuli 

highlights the influence of contextual factors beyond structural load alone. 

Second, when stimuli were grouped by complexity level (Low, Medium, High), Medium Load 

stories yielded the highest average IU gains (43.75), exceeding those of both High Load (25.0) and Low 

Load (18.25) groups. While this trend emerged from a small number of items per group, this tentative 

pattern may reflect principles from Cognitive Load Theory (Sweller et al., 2011) and Vygotsky’s Zone of 

Proximal Development (Vygotsky, 1978), which suggest that materials of moderate difficulty can support 

optimal learning when appropriately matched to the learner’s capabilities. This observation may also be 

consistent with foundational models of arousal and performance, such as the Yerkes-Dodson Law (Yerkes 

& Dodson, 1908), although further research is needed to determine whether this pattern is replicable and 

theoretically robust. 

Third, a clear contrast was observed between treatment stimuli and evaluation-only stimuli. 

Treatment stimuli, delivered with repetition, multimodal support, and clinician feedback, led to overall 

higher IU gains. Evaluation stimuli, by contrast, had a lower average gain (8.33) and showed much 

greater variability across items. Notably, the evaluation-only stimulus Library (Composite = –0.20) 

yielded a substantial IU gain (+38) despite not being directly trained. This suggests that treatment-induced 

strategies or language processing mechanisms may have generalized to untrained materials, producing 

positive effects. It is also plausible that the stimulus benefited from thematic familiarity or alignment with 

pre-existing narrative schemas (Bartlett, 1932; van Dijk & Kintsch, 1983). For example, situations 

involving libraries often include familiar actions such as reading, borrowing books, or interacting in quiet, 

structured settings, which are widely shared and reinforced in cultural experience (Nelson, 1986). These 

schema-consistent elements may have facilitated access to relevant linguistic and conceptual 

representations during retelling. The observed gain in this case may therefore reflect not only 

generalization effects from therapy, but also the cognitive advantage afforded by the use of familiar and 

semantically coherent content. Taken together, these findings indicate that such generalization effects 

In review



 18 

may arise not solely from structural complexity, but from the interaction of multiple factors, including 

treatment conditions, thematic properties of the stimuli, and individual background knowledge and 

cognitive state (Kay & Ellis, 1987; Edmonds et al., 2009). 

Additionally, because evaluation stimuli were presented only once without feedback, they may 

have more directly reflected the raw cognitive burden imposed by structural complexity. In contrast, the 

fact that several high-complexity treatment stimuli yielded strong IU gains suggests that the therapeutic 

process itself—through repetition, scaffolding, and feedback—may have enabled the participant to 

manage or even overcome the processing demands posed by more complex narratives. This aligns with 

the logic of Treatment of Underlying Forms (Thompson & Shapiro, 2005; Thompson et al., 2003), which 

supports the use of complex structures to promote generalization when accompanied by appropriate 

support. 

Furthermore, the generalization of treatment effects to some untrained stimuli suggests the 

possibility that the participant internalized strategies or representations that transferred beyond the trained 

material (Ulatowska et al., 1981). It is also possible that generalization resulted from implicit learning or 

schema-based facilitation, such as thematic familiarity or narrative scaffolding. However, this 

interpretation remains speculative given the limited data available.  

These observations suggest that structural complexity is better conceptualized not as a binary 

factor but as a modifiable design parameter that can be adjusted in relation to therapeutic goals and 

individual needs. Stimuli can be sequenced or adapted not only based on thematic content, but also on 

structural characteristics that align with a learner’s readiness and cognitive resources. 

To further clarify these patterns, Table 3 summarizes how each level of structural complexity—

low, medium, and high—interacted with stimulus context (treatment vs. evaluation) to influence 

responsiveness. This contextual view highlights that medium-complexity stimuli may be better suited for 

evaluation tasks, where no feedback or support is provided, while high-complexity stimuli may perform 

better in supported treatment environments. 
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Table 3. Contextual Suitability of Narrative Stimuli by Structural Complexity Level 

Complexity Level 
Suitability in 

Treatment Context 

Suitability in 

Evaluation Context 
Interpretation Example Stimuli 

Low 

Limited effectiveness 

due to excessive 

simplicity 

Low burden but 

reduced 

responsiveness 

May lack cognitive 

stimulation 

Sandwich, Tightrope, 

Baseball (T), Loan* (E) 

Medium 
Stable and 

consistently effective 

Elicits adequate 

response even 

without feedback 

Potentially suitable for 

evaluation stimuli 

Water, Paint, Garage 

Sale (T), Library* (E) 

High 

High responsiveness 

when supported with 

repetition and 

feedback 

Variable or 

burdensome under 

single exposure 

Potentially suitable for 

treatment stimuli 

Airport, Tickets, Fire 

(T), Gas* (E) 

*Note: (T) = Treatment stimulus, (E) = Evaluation-only stimulus. 
 
Table 3. Contextual suitability of narrative stimuli by structural complexity level. 
The table summarizes the interpretive roles of stimuli with low, medium, and high structural complexity across 
treatment and evaluation contexts. Example stimuli reflect the original stimulus names used in the study, with (T) 
indicating treatment stimuli and (E) indicating evaluation-only stimuli. 
 

This mapping reinforces the notion that structural complexity is neither inherently beneficial nor 

detrimental, but rather dependent on context. It underscores the importance of calibrating stimulus 

properties in relation to both linguistic characteristics and therapeutic goals, such as supporting 

generalization through untutored retellings or fostering growth through structured intervention. This 

perspective aligns with principles from cognitive load theory and the zone of proximal development, 

highlighting the value of tailoring task difficulty to individual readiness. Taken together, these 

considerations support a precision-based design framework in discourse-level aphasia therapy (Sweller et 

al., 2011; Vygotsky, 1978; Thompson & Shapiro, 2005). 

Clinical Relevance and Theoretical Implications 

Taken together, the findings suggest that structural complexity is not a fixed facilitator or barrier to 

progress, but a dynamic feature whose impact depends on task demands and treatment context. Rather 
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than assuming that greater complexity is always helpful or harmful, clinicians and researchers may 

benefit from treating complexity as a modifiable design parameter, one that can be calibrated according to 

individual profiles and therapy goals (Thompson & Shapiro, 2005; Sweller et al., 2011). Structurally 

informed stimulus design may facilitate alignment of input difficulty with individual readiness, support 

generalization through graded exposure, and promote adaptive sequencing in discourse-based aphasia 

therapy. Rather than establishing a fixed treatment framework, this approach may inform the development 

of precision-based, cognitively guided strategies for stimulus selection and calibration in future research 

(Thompson & Shapiro, 2005; Sweller et al., 2011; Marini et al., 2011; Boyle, 2010). In this view, 

structural complexity becomes a modifiable design parameter—one that can be explicitly measured, 

systematically manipulated, and flexibly matched to evolving therapeutic goals.  

Conclusion 

This single-case study demonstrates that the structural complexity of narrative stimuli can be 

systematically measured and categorized using quantifiable features. It also introduces a replicable tool 

for input calibration in therapy design. Although no consistent linear relationship was observed between 

complexity and treatment gains, certain patterns suggest that complexity may interact with treatment 

responsiveness under specific conditions. For example, complex stimuli appeared to support language 

production when actively trained but may have hindered generalization when untrained. These 

preliminary findings indicate that structural complexity may function as a context-sensitive variable, 

rather than a fixed facilitator or barrier, with potential to be modulated according to therapeutic goals and 

task demands. Further empirical research is needed to validate these observations and to explore the 

broader applicability of structural profiling in discourse-level intervention. 

 

Limitations and Future Directions 

This study is not without limitations. It relied on a single-case design and included only twelve stimuli, 

limiting generalizability. Additionally, while four structural features were quantified, other potentially 
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influential linguistic variables were not examined. These include lexical sophistication (Kyle & Crossley,  

2015), imageability (Paivio, 1991), verb argument structure complexity (Levelt, 1989; Thompson & 

Shapiro, 2007), and referential cohesion (Halliday & Hasan, 1976), which may affect discourse 

processing and production in nuanced ways. Their omission limits the explanatory power of the current 

structural profile, and future studies may benefit from incorporating a broader range of linguistic metrics 

to capture additional sources of variability in narrative responsiveness. Moreover, external variables such 

as topic familiarity, emotional salience, and cognitive state at time of testing were not controlled, 

particularly for evaluation-only stimuli. These factors may explain the variability observed across stories 

with similar complexity scores. Furthermore, the inherent clinical heterogeneity in aphasia profiles 

suggests that stimulus responsiveness may vary across individuals, warranting multi-case designs to 

assess generalizability. Future research should incorporate larger samples and more diverse stimulus sets, 

ideally using model-based approaches to capture interactions among stimulus complexity, participant 

profiles, and treatment conditions. Integrating real-time discourse data from individuals with aphasia and 

longitudinal follow-up could offer additional insight into the role of stimulus features in supporting long-

term functional outcomes. Taken together, these limitations underscore the need of developing structured, 

multidimensional frameworks that systematically integrate structural, cognitive, and contextual factors in 

discourse-level aphasia rehabilitation. 
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